Sequential product on standard effect algebra $\mathcal{E}(H)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42345203
(http://iopscience.iop.org/1751-8121/42/34/345203)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.155
The article was downloaded on 03/06/2010 at 08:05

Please note that terms and conditions apply.

Sequential product on standard effect algebra $\mathcal{E}(H)$

Shen Jun ${ }^{1,2}$ and Wu Junde ${ }^{1}$
${ }^{1}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China
${ }^{2}$ Department of Mathematics, Anhui Normal University, Wuhu 241003, People's Republic of China
E-mail: wjd@zju.edu.cn

Received 10 May 2009, in final form 11 May 2009
Published 6 August 2009
Online at stacks.iop.org/JPhysA/42/345203

Abstract

A quantum effect is an operator A on a complex Hilbert space H that satisfies $0 \leqslant A \leqslant I, \mathcal{E}(H)$ is the set of all quantum effects on H. In 2001, Professors Gudder and Nagy studied the sequential product $A \circ B=A^{\frac{1}{2}} B A^{\frac{1}{2}}$ for $A, B \in \mathcal{E}(H)$. In 2005, Professor Gudder asked: Is $A \circ B=A^{\frac{1}{2}} B A^{\frac{1}{2}}$ the only sequential product on $\mathcal{E}(H)$? Recently, Liu and Wu have presented an example to show that the answer is negative. In this paper, first, we characterize some algebraic properties of the abstract sequential product on $\mathcal{E}(H)$, second, we present a general method for constructing sequential products on $\mathcal{E}(H)$ and, finally, we study some properties of the sequential products constructed by the method.

PACS numbers: $02.10-\mathrm{v}, 02.30 . \mathrm{Tb}, 03.65 . \mathrm{Ta}$.

1. Introduction

The sequential effect algebra is an important model for studying quantum measurement theory [1-7]. A sequential effect algebra is an effect algebra which has a sequential product operation. First, we recall some elementary notations and results.

An effect algebra is a system $(E, 0,1, \oplus)$, where 0 and 1 are distinct elements of E, and \oplus is a partial binary operation on E satisfying that [8]
(EA1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $b \oplus a=a \oplus b$.
(EA2) If $a \oplus(b \oplus c)$ is defined, then $(a \oplus b) \oplus c$ is defined and

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

(EA3) For each $a \in E$, there exists a unique element $b \in E$ such that $a \oplus b=1$.
(EA4) If $a \oplus 1$ is defined, then $a=0$.

In an effect algebra $(E, 0,1, \oplus)$, if $a \oplus b$ is defined, we write $a \perp b$. For each $a \in(E, 0,1, \oplus)$, it follows from (EA3) that there exists a unique element $b \in E$ such that $a \oplus b=1$, we denote b by a^{\prime}. Let $a, b \in(E, 0,1, \oplus)$, if there exists $c \in E$ such that $a \perp c$ and $a \oplus c=b$, then we say that $a \leqslant b$. It follows from [8] that \leqslant is a partial order of $(E, 0,1, \oplus)$ and satisfies that for each $a \in E, 0 \leqslant a \leqslant 1, a \perp b$ if and only if $a \leqslant b^{\prime}$.

Let $(E, 0,1, \oplus, \circ)$ be an effect algebra and $a \in E$. If $a \wedge a^{\prime}=0$, then a is said to be a sharp element of E. We denote E_{S} by the set of all sharp elements of $E[9,10]$.

A sequential effect algebra is an effect algebra $(E, 0,1, \oplus)$ with another binary operation - defined on it satisfying [2]:
(SEA1) The map $b \mapsto a \circ b$ is additive for each $a \in E$, that is, if $b \perp c$, then $a \circ b \perp a \circ c$ and $a \circ(b \oplus c)=a \circ b \oplus a \circ c$.
(SEA2) $\quad 1 \circ a=a$ for each $a \in E$.
(SEA3) If $a \circ b=0$, then $a \circ b=b \circ a$.
(SEA4) If $a \circ b=b \circ a$, then $a \circ b^{\prime}=b^{\prime} \circ a$ and $a \circ(b \circ c)=(a \circ b) \circ c$ for each $c \in E$.
(SEA5) If $c \circ a=a \circ c$ and $c \circ b=b \circ c$, then $c \circ(a \circ b)=(a \circ b) \circ c$ and $c \circ(a \oplus b)=$ $(a \oplus b) \circ c$ whenever $a \perp b$.
If $(E, 0,1, \oplus, \circ)$ is a sequential effect algebra, then the operation \circ is said to be a sequential product on $(E, 0,1, \oplus)$. If $a, b \in(E, 0,1, \oplus, \circ)$ and $a \circ b=b \circ a$, then a and b is said to be sequentially independent and is denoted by $a \mid b$ [1, 2].

Let H be a complex Hilbert space, $\mathcal{B}(H)$ be the set of all bounded linear operators on $H, \mathcal{P}(H)$ be the set of all projections on $H, \mathcal{E}(H)$ be the set of all self-adjoint operators on H satisfying that $0 \leqslant A \leqslant I$. For $A, B \in \mathcal{E}(H)$, we say that $A \oplus B$ is defined if $A+B \in \mathcal{E}(H)$; in this case, we define $A \oplus B=A+B$. It is easy to see that $(\mathcal{E}(H), 0, I, \oplus)$ is an effect algebra; we call it a standard effect algebra [8]. Each element A in $\mathcal{E}(H)$ is said to be a quantum effect; the set $\mathcal{E}(H)_{S}$ of all sharp elements of $(\mathcal{E}(H), 0, I, \oplus)$ is just $\mathcal{P}(H)$ [2, 9].

Let $A \in \mathcal{B}(H)$; we denote $\operatorname{Ker}(A)=\{x \in H \mid A x=0\}, \operatorname{Ran}(A)=\{A x \mid x \in H\}$, $P_{\operatorname{Ker}(A)}$ denotes the projection onto $\operatorname{Ker}(A)$. Let $x \in H$ be a unit vector; P_{x} denotes the projection onto the one-dimensional subspace spanned by x.

In 2001 and 2002, Professors Gudder, Nagy and Greechie showed that for any two quantum effects A and B, if we define $A \circ B=A^{\frac{1}{2}} B A^{\frac{1}{2}}$, then the operation \circ is a sequential product on the standard effect algebra $(\mathcal{E}(H), 0, I, \oplus)$; moreover, they studied some properties of this special sequential product on $(\mathcal{E}(H), 0, I, \oplus)[1,2]$.

In 2005, Professor Gudder asked [4]: Is $A \circ B=A^{\frac{1}{2}} B A^{\frac{1}{2}}$ the only sequential product on the standard effect algebra $(\mathcal{E}(H), 0, I, \oplus)$?

In 2009, Liu and Wu constructed a new sequential product on $(\mathcal{E}(H), 0, I, \oplus)$, thus answering Gudder's problem negatively [7]. This new sequential product on $(\mathcal{E}(H), 0, I, \oplus)$ motivated us to study the following topics in this paper:
(1) characterize the algebraic properties of an abstract sequential product on $(\mathcal{E}(H), 0, I, \oplus)$;
(2) present a general method for constructing a sequential product on $(\mathcal{E}(H), 0, I, \oplus)$;
(3) characterize some elementary properties of the sequential product constructed by the method.

Our results generalize many conclusions in [1, 3, 7].

2. Abstract sequential product on $(\mathcal{E}(H), 0, I, \oplus)$

In this section, we study some elementary properties of the abstract sequential product on the standard effect algebra $(\mathcal{E}(H), 0, I, \oplus)$.

Lemma 2.1 [2]. Let $(E, 0,1, \oplus, \circ)$ be a sequential effect algebra, $a \in E$. Then the following conditions are all equivalent:
(1) $a \in E_{S}$;
(2) $a \circ a^{\prime}=0$,
(3) $a \circ a=a$.

Lemma 2.2 [2]. Let $(E, 0,1, \oplus, \circ)$ be a sequential effect algebra, $a \in E, b \in E_{S}$. Then the following conditions are all equivalent:
(1) $a \leqslant b$;
(2) $a \circ b=b \circ a=a$.

Lemma 2.3 $[2,8]$. Let $(E, 0,1, \oplus, \circ)$ be a sequential effect algebra, $a, b, c \in E$.
(1) If $a \perp b, a \perp c$ and $a \oplus b=a \oplus c$, then $b=c$.
(2) $a \circ b \leqslant a$.
(3) If $a \leqslant b$, then $c \circ a \leqslant c \circ b$.

Lemma 2.4 [7]. Let \circ be a sequential product on the standard effect algebra $(\mathcal{E}(H), 0, I, \oplus)$. Then for any $A, B \in \mathcal{E}(H)$ and real number $t, 0 \leqslant t \leqslant 1$, we have $(t A) \circ B=A \circ(t B)=$ $t(A \circ B)$.

Lemma 2.5 [1]. Let $A, B, C \in \mathcal{B}(H)$ and A, B, C be self-adjoint operators. If for every unit vector $x \in H,\langle C x, x\rangle=\langle A x, x\rangle\langle B x, x\rangle$, then $A=t I$ or $B=t I$ for some real number t.

Lemma 2.6 [11]. Let $A \in \mathcal{B}(H)$ have the following operator matrix form:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

with respect to the space decomposition $H=H_{1} \oplus H_{2}$. Then $A \geqslant 0$ iff
(1) $A_{i i} \in \mathcal{B}\left(H_{i}\right)$ and $A_{i i} \geqslant 0, i=1,2$;
(2) $A_{21}=A_{12}^{*}$;
(3) there exists a linear operator D from H_{2} into H_{1} such that $\|D\| \leqslant 1$ and $A_{12}=A_{11}^{\frac{1}{2}} D A_{22}^{\frac{1}{2}}$.

Theorem 2.1. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), B \in \mathcal{E}(H), E \in \mathcal{P}(H)$. Then $E \circ B=E B E$.

Proof. For $A \in \mathcal{E}(H)$, let $\Phi_{A}: \mathcal{E}(H) \longrightarrow \mathcal{E}(H)$ be defined by $\Phi_{A}(C)=A \circ C$ for each $C \in \mathcal{E}(H)$. It follows from lemma 2.4 and (SEA1) that Φ_{A} is affine on the convex set $\mathcal{E}(H)$. Note that $\mathcal{E}(H)$ generates algebraically the vector space $\mathcal{B}(H)$, so Φ_{A} has a unique linear extension to $\mathcal{B}(H)$, which we also denote by Φ_{A}. Then Φ_{A} is a positive linear operator on $\mathcal{B}(H)$ and $\Phi_{A}(I)=A$. Thus Φ_{A} is continuous.

Note that $E \in \mathcal{P}(H)=\mathcal{E}(H)_{S}$, it follows from lemma 2.1 that $E \circ(I-E)=0$ and so $\Phi_{E}(I-E)=0$. By composing Φ_{E} with all states on $\mathcal{B}(H)$ and using Schwarz's inequality, we conclude that $\Phi_{E}(B)=\Phi_{E}(E B E)$. Since $E B E \in \mathcal{E}(H), E \in \mathcal{E}(H)_{S}$ and $E B E \leqslant E$, by lemma 2.2 we have $E \circ(E B E)=E B E$. Thus $E \circ B=\Phi_{E}(B)=\Phi_{E}(E B E)=$ $E \circ(E B E)=E B E$.

In [7], the authors proved the above result for two-dimensional complex Hilbert spaces \square
Theorem 2.2. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), A, B \in \mathcal{E}(H)$ and $A B=B A$. Then $A \circ B=B \circ A=A B$.

Proof. We use the notations as in the proof of theorem 2.1.
Suppose $E \in \mathcal{P}(H)$ and $E \in\{A\}^{\prime}$, i.e., $E A=A E$. Note that $E A E,(I-E) A(I-E) \in$ $\mathcal{E}(H), E A E \leqslant E$ and $(I-E) A(I-E) \leqslant I-E$, by lemma 2.2, it follows that $E A E \mid E$ and $(I-E) A(I-E) \mid(I-E)$. Since $A=E A E+(I-E) A(I-E)$, by (SEA4) and (SEA5) we have $A \mid E$. By theorem 2.1, we conclude that $A \circ E=E \circ A=E A E=A E$. Thus, $\Phi_{A}(E)=A E$. Since Φ_{A} is a continuous linear operator and $\{A\}^{\prime}$ is a von Neumann algebra, we conclude that $\Phi_{A}(B)=A B$. That is, $A \circ B=A B$. Similarly, we have $B \circ A=B A$. Thus $A \circ B=B \circ A=A B$.

Theorem 2.3. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), A, B \in \mathcal{E}(H)$. Then the following conditions are all equivalent:
(1) $A B=B A=B$;
(2) $A \circ B \geqslant B$;
(3) $A \circ B=B$;
(4) $B \circ A=B$;
(5) $B \leqslant P_{\operatorname{Ker}(I-A) \text {; }}$
(6) $B \leqslant A^{n}$ for each positive integer n.

Proof. $(1) \Rightarrow(3)$ and $(1) \Rightarrow(4)$: by theorem 2.2.
$(3) \Rightarrow(2)$ is obvious.
$(4) \Rightarrow(3)$: by theorem $2.2, B \circ A=B=B \circ I$. Thus, it follows from lemma 2.3 that $B \circ(I-A)=0$. By (SEA3), $B \mid(I-A)$. By (SEA4), $B \mid A$. So $A \circ B=B \circ A=B$.
$(2) \Rightarrow(6)$: by using theorem 2.2 and lemma 2.3 repeatedly, we have

$$
\begin{aligned}
& B \leqslant A \circ B \leqslant A \circ I=A \\
& A \circ B \leqslant A \circ(A \circ B) \leqslant A \circ A=A^{2} ; \\
& A \circ(A \circ B) \leqslant A \circ(A \circ(A \circ B)) \leqslant A \circ A^{2}=A^{3} ; \\
& \vdots \\
& A \circ \cdots \circ(A \circ B) \leqslant A \circ(A \circ \cdots \circ(A \circ B)) \leqslant A \circ A^{n-1}=A^{n} .
\end{aligned}
$$

The above showed that $B \leqslant A^{n}$ for each positive integer n.
$(6) \Rightarrow(5)$: let $\chi_{\{1\}}$ be the characteristic function of $\{1\}$. Note that $0 \leqslant A \leqslant I$, it is easy to know that $\left\{A^{n}\right\}$ converges to $\chi_{\{1\}}(A)=P_{\operatorname{Ker}(I-A)}$ in the strong operator topology. Thus $B \leqslant P_{\operatorname{Ker}(I-A)}$.
(5) $\Rightarrow(1):$ Since $0 \leqslant B \leqslant P_{\operatorname{Ker}(I-A)}$, we have $\operatorname{Ker}\left(P_{\operatorname{Ker}(I-A)}\right) \subseteq \operatorname{Ker}(B)$. So $\operatorname{Ran}(B) \subseteq \operatorname{Ran}\left(P_{\operatorname{Ker}(I-A)}\right)=\operatorname{Ker}(I-A)$. Thus $(I-A) B=0$. That is, $A B=B$. Taking the adjoint, we get $A B=B A=B$.

Theorem 2.4. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), A, B \in \mathcal{E}(H)$. Then the following conditions are all equivalent:
(1) $C \circ(A \circ B)=(C \circ A) \circ B$ for every $C \in \mathcal{E}(H)$;
(2) $\langle(A \circ B) x, x\rangle=\langle A x, x\rangle\langle B x, x\rangle$ for every $x \in H$ with $\|x\|=1$;
(3) $A=t I$ or $B=t I$ for some real number $0 \leqslant t \leqslant 1$.

Proof. By lemma 2.5, we conclude that $(2) \Rightarrow(3)$. By theorem 2.2 and lemma $2.4,(3) \Rightarrow(1)$ is trivial.
(1) \Rightarrow (2): if (1) holds, then $P_{x} \circ(A \circ B)=\left(P_{x} \circ A\right) \circ B$ for every $x \in H$ with $\|x\|=1$. By theorem 2.1, $P_{x} \circ(A \circ B)=P_{x}(A \circ B) P_{x}=\langle(A \circ B) x, x\rangle P_{x}$. By theorem 2.1 and lemma 2.4,
$\left(P_{x} \circ A\right) \circ B=\left(P_{x} A P_{x}\right) \circ B=\left(\langle A x, x\rangle P_{x}\right) \circ B=\langle A x, x\rangle\left(P_{x} \circ B\right)=\langle A x, x\rangle P_{x} B P_{x}=$ $\langle A x, x\rangle\langle B x, x\rangle P_{x}$. Thus (2) holds.

Theorem 2.5. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), B \in \mathcal{E}(H), E \in \mathcal{P}(H)$. Then the following conditions are all equivalent:
(1) $E \circ B \leqslant B$;
(2) $E B=B E$;
(3) $E \circ B=B \circ E$.

Proof. (2) \Rightarrow (3): by theorem 2.2.
$(3) \Rightarrow(1)$: by lemma 2.3 .
$(1) \Rightarrow(2)$: since $E \in \mathcal{P}(H)$, by theorem 2.1, $E \circ B=E B E$. Thus, $B-E B E \geqslant 0$. Note that

$$
B-E B E=\left(\begin{array}{cc}
0 & E B(I-E) \\
(I-E) B E & (I-E) B(I-E)
\end{array}\right)
$$

with respect to the space decomposition $H=\overline{\operatorname{Ran}(E)} \oplus \operatorname{Ker}(E)$, so by lemma 2.6 we have $E B(I-E)=(I-E) B E=0$. Thus $B=E B E+(I-E) B(I-E)$. So $E B=B E$.

Theorem 2.6. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), A, B, C \in \mathcal{E}(H)$. If A is invertible, then the following conditions are all equivalent:
(1) $B \leqslant C$;
(2) $A \circ B \leqslant A \circ C$.

Proof. (1) $\Rightarrow(2)$: by lemma 2.3.
$(2) \Rightarrow(1)$: it is easy to see that $\left\|A^{-1}\right\|^{-1} A^{-1} \in \mathcal{E}(H)$.
By lemma 2.3, $\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ(A \circ B) \leqslant\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ(A \circ C)$.
By theorem 2.2, $\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \mid A$ and $\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ A=\left\|A^{-1}\right\|^{-1} I$.
By (SEA4) and theorem 2.2, we have
$\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ(A \circ B)=\left(\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ A\right) \circ B=\left(\left\|A^{-1}\right\|^{-1} I\right) \circ B=\left\|A^{-1}\right\|^{-1} B$,
$\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ(A \circ C)=\left(\left(\left\|A^{-1}\right\|^{-1} A^{-1}\right) \circ A\right) \circ C=\left(\left\|A^{-1}\right\|^{-1} I\right) \circ C=\left\|A^{-1}\right\|^{-1} C$.
So, $B \leqslant C$.
Corollary 2.1. Let \circ be a sequential product on $(\mathcal{E}(H), 0, I, \oplus), A, B, C \in \mathcal{E}(H)$. If A is invertible, then the following conditions are all equivalent:
(1) $B=C$;
(2) $A \circ B=A \circ C$.

3. General method for constructing sequential products on $\mathcal{E}(H)$

In the following, unless specified, let H be a finite-dimensional complex Hilbert space, \mathbf{C} be the set of complex numbers, \mathbf{R} be the set of real numbers, for each $A \in \mathcal{E}(H), \operatorname{sp}(A)$ be the spectrum of A and $\mathcal{B}(s p(A))$ be the set of all bounded complex Borel functions on $\operatorname{sp}(A)$.

Let $A, B \in \mathcal{B}(H)$, if there exists a complex constant ξ such that $|\xi|=1$ and $A=\xi B$, then we denote $A \approx B$.

In [7], Liu and Wu showed that if we define $A \circ B=A^{\frac{1}{2}} f_{i}(A) B f_{-i}(A) A^{\frac{1}{2}}$ for $A, B \in \mathcal{E}(H)$, where $f_{z}(t)=\exp z(\ln t)$ if $t \in(0,1]$ and $f_{z}(0)=0$, then \circ is a sequential product on $(\mathcal{E}(H), 0, I, \oplus)$; this result answered Gudder's problem negatively.

Now, we present a general method for constructing sequential products on $\mathcal{E}(H)$.
For each $A \in \mathcal{E}(H)$, take $f_{A} \in \mathcal{B}(s p(A))$.
Define $A \diamond B=f_{A}(A) B \overline{f_{A}}(A)$ for $A, B \in \mathcal{E}(H)$.
We say the set $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition if the following two conditions hold:
(i) for every $A \in \mathcal{E}(H)$ and $t \in \operatorname{sp}(A),\left|f_{A}(t)\right|=\sqrt{t}$;
(ii) for any $A, B \in \mathcal{E}(H)$, if $A B=B A$, then $f_{A}(A) f_{B}(B) \approx f_{A B}(A B)$.

If $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition, then it is easy to see that
(1) $f_{A}(A) \overline{f_{A}}(A)=\overline{f_{A}}(A) f_{A}(A)=A,\left(f_{A}(A)\right)^{*}=\overline{f_{A}}(A)$;
(2) if $0 \in \operatorname{sp}(A)$, then $f_{A}(0)=0$;
(3) if $A=\sum_{k=1}^{n} \lambda_{k} E_{k}$, where $\left\{E_{k}\right\}_{k=1}^{n}$ are pairwise orthogonal projections, then $f_{A}(A)=$ $\sum_{k=1}^{n} f_{A}\left(\lambda_{k}\right) E_{k} ;$
(4) for each $E \in \mathcal{P}(H), f_{E}(E)=f_{E}(0)(I-E)+f_{E}(1) E=f_{E}(1) E$;
(5) for any $A, B \in \mathcal{E}(H), A \diamond B \in \mathcal{E}(H)$.

Lemma 3.1 [12]. Let H be a complex Hilbert space, $A, B \in \mathcal{B}(H), A, B, A B$ be three normal operators, and at least one of A, B be a compact operator. Then $B A$ is also a normal operator.

Lemma 3.2 [13]. If $M, N, T \in \mathcal{B}(H), M, N$ are normal operators and $M T=T N$, then $M^{*} T=T N^{*}$.

Lemma 3.3. Let $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfy the sequential product condition and $A, B \in \mathcal{E}(H)$. If $A \diamond B=B \diamond A$ or $A \diamond B=\overline{f_{B}}(B) A f_{B}(B)$, then $A B=B A$.

Proof. If $A \diamond B=B \diamond A$, that is, $f_{A}(A) B \overline{f_{A}}(A)=f_{B}(B) A \overline{f_{B}}(B)$, then $f_{A}(A) \overline{f_{B}}(B)$ $f_{B}(B) \overline{f_{A}}(A)=f_{B}(B) \overline{f_{A}}(A) f_{A}(A) \overline{f_{B}}(B)$, so $f_{A}(A) \overline{f_{B}}(B)$ is normal. By lemma 3.1, we have that $\overline{f_{B}}(B) f_{A}(A)$ is also normal. Note that $\left(f_{A}(A) \overline{f_{B}}(B)\right) f_{A}(A)=f_{A}(A)\left(\overline{f_{B}}(B) f_{A}(A)\right)$, by using lemma 3.2, we have $\left(f_{A}(A) \overline{f_{B}}(B)\right)^{*} f_{A}(A)=f_{A}(A)\left(\overline{f_{B}}(B) f_{A}(A)\right)^{*}$. That is, $f_{B}(B) A=A f_{B}(B)$. Taking the adjoint, we have $\overline{f_{B}}(B) A=A \overline{f_{B}}(B)$. Thus, $A B=A \overline{f_{B}}(B) f_{B}(B)=\overline{f_{B}}(B) A f_{B}(B)=\overline{f_{B}}(B) f_{B}(B) A=B A$.

If $A \diamond B=\overline{f_{B}}(B) A f_{B}(B)$, that is, $f_{A}(A) B \overline{f_{A}}(A)=\overline{f_{B}}(B) A f_{B}(B)$, the proof is similar, we omit it.

Lemma 3.4. Let $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfy the sequential product condition and $A, B \in \mathcal{E}(H)$. If $A B=B A$, then $A \diamond B=B \diamond A=A B$.

Proof. Since $A B=B A$, by sequential product condition (i) we have $A \diamond B=$ $f_{A}(A) B \overline{f_{A}}(A)=\left|f_{A}\right|^{2}(A) B=A B$. Similarly, $B \diamond A=f_{B}(B) A \overline{f_{B}}(B)=\left|f_{B}\right|^{2}(B) A=A B$. Thus $A \diamond B=B \diamond A=A B$.

Lemma 3.5. Let $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfy the sequential product condition and $A, B \in \mathcal{E}(H)$. If $A B=B A$, then for every $C \in \mathcal{E}(H), A \diamond(B \diamond C)=(A \diamond B) \diamond C$.

Proof. By lemma 3.4, $A \diamond B=A B$. By sequential product condition (ii), there exists a complex constant ξ such that $|\xi|=1$ and $f_{A}(A) f_{B}(B)=\xi f_{A B}(A B)$. Taking the adjoint, we have $\overline{f_{B}}(B) \overline{f_{A}}(A)=\overline{\xi f_{A B}}(A B)$. Thus, $f_{A}(A) f_{B}(B) C \overline{f_{B}}(B) \overline{f_{A}}(A)=f_{A B}(A B) C \overline{f_{A B}}(A B)=$ $f_{A \diamond B}(A \diamond B) C \overline{f_{A \diamond B}}(A \diamond B)$. That is, $A \diamond(B \diamond C)=(A \diamond B) \diamond C$.

Lemma 3.6 [1]. If $y, z \in H$ and $|\langle y, x\rangle|=|\langle z, x\rangle|$ for every $x \in H$, then there exists $c \in \mathbf{C},|c|=1$, such that $y=c z$.

Lemma 3.7 [14]. Let $f: H \longrightarrow \mathbf{C}$ be a mapping, $T \in \mathcal{B}(H)$. If the operator $S: H \longrightarrow H$ defined by $S(x)=f(x) T(x)$ is linear, then $f(x)=f(y)$ for every $x, y \notin \operatorname{Ker}(T)$.
Lemma 3.8. Let $f: H \longrightarrow \mathbf{C}$ be a mapping, $T \in \mathcal{B}(H)$. If the operator $S: H \longrightarrow H$ defined by $S(x)=f(x) T(x)$ is linear, then there exists a constant $\xi \in \mathbf{C}$ such that $S(x)=\xi T(x)$ for every $x \in H$.

Proof. By lemma 3.7, there exists a constant $\xi \in \mathbf{C}$ such that $S(x)=\xi T(x)$ for every $x \notin \operatorname{Ker}(T)$. Of course, $S(x)=0=\xi T(x)$ for every $x \in \operatorname{Ker}(T)$. So $S(x)=\xi T(x)$ for every $x \in H$.

Our main result in the section is the following.
Theorem 3.1. For each $A \in \mathcal{E}(H)$, take $f_{A} \in \mathcal{B}(s p(A))$. Define $A \diamond B=f_{A}(A) B \overline{f_{A}}(A)$ for $B \in \mathcal{E}(H)$. Then \diamond is a sequential product on $(\mathcal{E}(H), 0, I, \oplus)$ iff the set $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition.

Proof.

(1) First, we suppose that $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition, we show that $(\mathcal{E}(H), 0, I, \oplus, \diamond)$ is a sequential effect algebra.
(SEA1) is obvious.
By lemma 3.4, $I \diamond B=B$ for each $B \in \mathcal{E}(H)$, so (SEA2) hold.
We verify (SEA3) as follows: if $A \diamond B=0$, then $f_{A}(A) B \overline{f_{A}}(A)=0$, so $f_{A}(A) B^{\frac{1}{2}}=0$, thus, we have $A B=\overline{f_{A}}(A) f_{A}(A) B^{\frac{1}{2}} B^{\frac{1}{2}}=0$. Taking the adjoint, we have $A B=B A$. So $A \diamond B=B \diamond A$. We verify (SEA4) as follows: if $A \diamond B=B \diamond A$, then by lemma 3.3, $A B=B A$. So $A(I-B)=(I-B) A$. By lemma 3.4, we have $A \diamond(I-B)=(I-B) \diamond A$. By lemma 3.5, $A \diamond(B \diamond C)=(A \diamond B) \diamond C$ for every $C \in \mathcal{E}(H)$. We verify (SEA5) as follows: if $C \diamond A=A \diamond C$ and $C \diamond B=B \diamond C$, then by lemma 3.3, $A C=C A, B C=C B$. So (SEA5) follows easily by lemma 3.4. Thus, we proved that $(\mathcal{E}(H), 0, I, \oplus, \diamond)$ is a sequential effect algebra.
(2) Now we suppose that \diamond is a sequential product on $(\mathcal{E}(H), 0, I, \oplus)$, we show that the set $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition. Since $(\mathcal{E}(H), 0, I, \oplus, \diamond)$ is a sequential effect algebra, by theorem 2.2 , for each $A \in \mathcal{E}(H), A \diamond I=A$, thus $\left|f_{A}\right|^{2}(A)=A$. If $A=\sum_{k=1}^{n} \lambda_{k} E_{k}$, where $\left\{E_{k}\right\}_{k=1}^{n}$ are pairwise orthogonal projections, $\sum_{k=1}^{n} E_{k}=I$, then $\operatorname{sp}(A)=\left\{\lambda_{k}\right\},\left|f_{A}\right|^{2}(A)=\sum_{k=1}^{\bar{n}}\left|f_{A}\left(\lambda_{k}\right)\right|^{2} E_{k}$. Thus $\left|f_{A}\left(\lambda_{k}\right)\right|=\sqrt{\lambda_{k}}$ and $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies sequential product condition (i).
To prove that $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies sequential product condition (ii), let $A, B \in \mathcal{E}(H)$ and $A B=B A$. By theorem 2.2, we have $A \diamond B=B \diamond A=A B$. Thus by (SEA4), $A \diamond(B \diamond C)=(A \diamond B) \diamond C$ for every $C \in \mathcal{E}(H)$.

Let $x \in H,\|x\|=1, C=P_{x}$. Then for every $y \in H$, we have

$$
\begin{aligned}
\left\langle f_{A}(A) f_{B}(B) P_{x} \overline{f_{B}}(B) \overline{f_{A}}(A) y, y\right\rangle & =\left\langle\left(A \diamond\left(B \diamond P_{x}\right)\right) y, y\right\rangle \\
& =\left\langle\left((A \diamond B) \diamond P_{x}\right) y, y\right\rangle \\
& =\left\langle\left((A B) \diamond P_{x}\right) y, y\right\rangle \\
& =\left\langle f_{A B}(A B) P_{x} \overline{f_{A B}}(A B) y, y\right\rangle .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left\langle f_{A}(A) f_{B}(B) P_{x} \overline{f_{B}}(B) \overline{f_{A}}(A) y, y\right\rangle=\left|\left\langle\overline{f_{B}}(B) \overline{f_{A}}(A) y, x\right\rangle\right|^{2}, \\
& \left\langle f_{A B}(A B) P_{x} \overline{f_{A B}}(A B) y, y\right\rangle=\left|\left\langle\overline{f_{A B}}(A B) y, x\right\rangle\right|^{2},
\end{aligned}
$$

we have $\left|\left\langle\overline{f_{B}}(B) \overline{f_{A}}(A) y, x\right\rangle\right|=\left|\left\langle\overline{f_{A B}}(A B) y, x\right\rangle\right|$ for every $x, y \in H$.

By lemma 3.6, there exists a complex function g on H such that $|g(x)| \equiv 1$ and $\overline{f_{B}}(B) \overline{f_{A}}(A) x=g(x) \overline{f_{A B}}(A B) x$ for every $x \in H$. By lemma 3.8, there exists a constant $\xi \in \mathbf{C}$ such that $|\xi|=1$ and $\overline{f_{B}}(B) \overline{f_{A}}(A) x=\xi \overline{f_{A B}}(A B) x$ for every $x \in H$. So we conclude that $\overline{f_{B}}(B) \overline{f_{A}}(A)=\xi \overline{f_{A B}}(A B)$. Taking the adjoint, we have $f_{A}(A) f_{B}(B)=\bar{\xi} f_{A B}(A B)$. Thus $f_{A}(A) f_{B}(B) \approx f_{A B}(A B)$. This showed that the set $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition.

Theorem 3.1 presents a general method for constructing sequential products on $\mathcal{E}(H)$. Now, we give two examples.

Example 3.1. Let g be a bounded complex Borel function on $[0,1]$ such that

$$
\begin{aligned}
& |g(t)|=\sqrt{t} \text { for each } t \in[0,1] \\
& g\left(t_{1} t_{2}\right)=g\left(t_{1}\right) g\left(t_{2}\right) \text { for any } t_{1}, t_{2} \in[0,1] .
\end{aligned}
$$

For each $A \in \mathcal{E}(H)$, let $f_{A}=\left.g\right|_{s p(A)}$. Then it is easy to know that $\left\{f_{A}\right\}$ satisfies the sequential product condition. So by theorem 3.1, $A \diamond B=f_{A}(A) B \overline{f_{A}}(A)=g(A) B \bar{g}(A)$ defines a sequential product on the standard effect algebra $(\mathcal{E}(H), 0, I, \oplus)$.

It is clear that example 3.1 generalizes Liu and Wu's result in [7].
Example 3.2. Let H be a two-dimensional complex Hilbert space, $\Gamma=\{\gamma \mid \gamma$ be a decomposition of I into two rank-1 orthogonal projections\}. For each $\gamma \in \Gamma$, we can represent γ by a pair of rank-1 orthogonal projections (E_{1}, E_{2}), if $A \in \mathcal{E}(H), A \notin \operatorname{span}\{I\}=$ $\{z I: z \in \mathbf{C}\}$ and $A=\sum_{k=1}^{2} \lambda_{k} E_{k}$, then we say that A can be diagonalized by γ.

For each $\gamma \in \Gamma$, we take a $\xi(\gamma) \in \mathbf{R}$. If $A \in \mathcal{E}(H), A \notin \operatorname{span}\{I\}$ and A can be diagonalized by γ, let $f_{A}(t)=t^{\frac{1}{2}+\xi(\gamma) i}$ for $t \in \operatorname{sp}(A)$.

If $A \in \mathcal{E}(H)$ and $A=\lambda I$, let $f_{A}(t)=\sqrt{t}$ for $t \in \operatorname{sp}(A)$.
Then the set $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition (see the proof below). So by theorem 3.1, $A \diamond B=f_{A}(A) B \overline{f_{A}}(A)$ defines a sequential product on the standard effect algebra $(\mathcal{E}(H), 0, I, \oplus)$.

Proof. Obviously, $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies sequential product condition (i).
Now we show that $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies sequential product condition (ii). Let $A, B \in$ $\mathcal{E}(H), A B=B A$.
(1) If $A=\sum_{k=1}^{2} \lambda_{k} E_{k}, B=\sum_{k=1}^{2} \mu_{k} E_{k}, \lambda_{1} \neq \lambda_{2}, \mu_{1} \neq \mu_{2}$, let $\gamma=\left(E_{1}, E_{2}\right)$, we have $f_{A}(t)=t^{\frac{1}{2}+\xi(\gamma) i}$ for $t \in \operatorname{sp}(A), f_{B}(t)=t^{\frac{1}{2}+\xi(\gamma) i}$ for $t \in \operatorname{sp}(B)$. So $f_{A}(A)=A^{\frac{1}{2}+\xi(\gamma) i}=\sum_{k=1}^{2} \lambda_{k}^{\frac{1}{2}+\xi(\gamma) i} E_{k}, f_{B}(B)=B^{\frac{1}{2}+\xi(\gamma) i}=\sum_{k=1}^{2} \mu_{k}^{\frac{1}{2}+\xi(\gamma) i} E_{k}$.
(1a) If $\lambda_{1} \mu_{1}=\lambda_{2} \mu_{2}$, then $A B=\lambda_{1} \mu_{1} I$, so $f_{A B}(t)=t^{\frac{1}{2}}$ for $t \in \operatorname{sp}(A B)$, thus we have $f_{A B}(A B)=(A B)^{\frac{1}{2}}=\sqrt{\lambda_{1} \mu_{1}} I, f_{A}(A) f_{B}(B)=\sum_{k=1}^{2}\left(\lambda_{k} \mu_{k}\right)^{\frac{1}{2}+\xi(\gamma) i} E_{k}=$ $\left(\lambda_{1} \mu_{1}\right)^{\frac{1}{2}+\xi(\gamma) i} I=\left(\lambda_{1} \mu_{1}\right)^{\xi(\gamma) i} f_{A B}(A B) \approx f_{A B}(A B)$.
(1b) If $\lambda_{1} \mu_{1} \neq \lambda_{2} \mu_{2}$, then $A B=\sum_{k=1}^{2} \lambda_{k} \mu_{k} E_{k}$, so $f_{A B}(t)=t^{\frac{1}{2}+\xi(\gamma) i}$ for $t \in \operatorname{sp}(A B), f_{A B}(A B)=(A B)^{\frac{1}{2}+\xi(\gamma) i}=\sum_{k=1}^{2}\left(\lambda_{k} \mu_{k}\right)^{\frac{1}{2}+\xi(\gamma) i} E_{k}$, thus we have $f_{A}(A) f_{B}(B)=\sum_{k=1}^{2}\left(\lambda_{k} \mu_{k}\right)^{\frac{1}{2}+\xi(\gamma) i} E_{k}=f_{A B}(A B)$.
(2) If $A=\lambda I, B=\sum_{k=1}^{2} \mu_{k} E_{k}, \mu_{1} \neq \mu_{2}$, let $\gamma=\left(E_{1}, E_{2}\right)$. Then we have $f_{A}(t)=t^{\frac{1}{2}}$ for $t \in \operatorname{sp}(A), f_{B}(t)=t^{\frac{1}{2}+\xi(\gamma) i}$ for $t \in \operatorname{sp}(B)$. So $f_{A}(A)=A^{\frac{1}{2}}=\sqrt{\lambda} I, f_{B}(B)=$ $B^{\frac{1}{2}+\xi(\gamma) i}=\sum_{k=1}^{2} \mu_{k}^{\frac{1}{2}+\xi(\gamma) i} E_{k}, A B=\sum_{k=1}^{2} \lambda \mu_{k} E_{k}$.
(2a) If $\lambda=0$, then $A B=0, f_{A B}(t)=t^{\frac{1}{2}}$ for $t \in \operatorname{sp}(A B)$, so $f_{A B}(A B)=(A B)^{\frac{1}{2}}=0$. Thus $f_{A}(A) f_{B}(B)=0=f_{A B}(A B)$.
(2b) If $\lambda \neq 0$, then $f_{A B}(t)=t^{\frac{1}{2}+\xi(\gamma) i}$ for $t \in \operatorname{sp}(A B)$. So $f_{A B}(A B)=(A B)^{\frac{1}{2}+\xi(\gamma) i}=$ $\lambda^{\frac{1}{2}+\xi(\gamma) i} \sum_{k=1}^{2}\left(\mu_{k}\right)^{\frac{1}{2}+\xi(\gamma) i} E_{k}$. Thus $f_{A}(A) f_{B}(B)=\sqrt{\lambda} \sum_{k=1}^{2}\left(\mu_{k}\right)^{\frac{1}{2}+\xi(\gamma) i} E_{k} \approx$ $f_{A B}(A B)$.
(3) If $A=\lambda I, B=\mu I$, then $f_{A}(t)=t^{\frac{1}{2}}$ for $t \in \operatorname{sp}(A), f_{B}(t)=t^{\frac{1}{2}}$ for $t \in \operatorname{sp}(B)$. So $f_{A}(A)=A^{\frac{1}{2}}=\sqrt{\lambda} I, f_{B}(B)=B^{\frac{1}{2}}=\sqrt{\mu} I . \quad A B=\lambda \mu I, f_{A B}(t)=t^{\frac{1}{2}}$ for $t \in \operatorname{sp}(A B), f_{A B}(A B)=(A B)^{\frac{1}{2}}=\sqrt{\lambda \mu} I$. Thus $f_{A}(A) f_{B}(B)=f_{A B}(A B)$.

It follows from (1)-(3) that the set $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies sequential product condition (ii).

4. Properties of the sequential product \diamond on $(\mathcal{E}(H), 0, I, \oplus)$

Now, we study some elementary properties of the sequential product \diamond defined in section 3 .
In this section, unless specified, we follow the notations in section 3 . We always suppose that $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition. So by theorem 3.1, \diamond is a sequential product on the standard effect algebra $(\varepsilon(H), 0, I, \oplus)$.

Lemma 4.1. If $C \in \mathcal{E}(H), 0 \leqslant t \leqslant 1$, then $f_{t C}(t C) \approx f_{t I}(t) f_{C}(C)$.
Proof. Since $\left\{f_{A}\right\}_{A \in \mathcal{E}(H)}$ satisfies the sequential product condition, $f_{t C}(t C) \approx f_{t I}(t I)$ $f_{C}(C)=f_{t I}(t) f_{C}(C)$.
Lemma 4.2. Let $A \in \mathcal{E}(H), x \in H,\|x\|=1,\left\|f_{A}(A) x\right\| \neq 0, y=\frac{f_{A}(A) x}{\left\|f_{A}(A) x\right\|}$. Then $A \diamond P_{x}=$ $\left\|f_{A}(A) x\right\|^{2} P_{y}$.

Proof. For each $z \in H,\left(A \diamond P_{x}\right) z=f_{A}(A) P_{x} \overline{f_{A}}(A) z=\left\langle\overline{f_{A}}(A) z, x\right\rangle f_{A}(A) x=\left\langle z, f_{A}(A) x\right\rangle$ $f_{A}(A) x=\left\|f_{A}(A) x\right\|^{2} P_{y} z$. So $A \diamond P_{x}=\left\|f_{A}(A) x\right\|^{2} P_{y}$.

Lemma 4.3. Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra, P be a minimal projection in $M, A \in M, x \in \operatorname{Ran}(P),\|x\|=1$. Then $P A P=\omega_{x}(A) P$, where $\omega_{x}(A)=\langle A x, x\rangle$.

Proof. Since P is a minimal projection in M, by [15, proposition 6.4.3], $P A P=\lambda P$ for some complex number λ. Thus $\langle P A P x, x\rangle=\langle\lambda P x, x\rangle$. So $\lambda=\omega_{x}(A)$.
Theorem 4.1. Let $A, B \in \mathcal{E}(H)$. Then the following conditions are all equivalent:
(1) $A B=B A$;
(2) $A \diamond B=B \diamond A$;
(3) $A \diamond(B \diamond C)=(A \diamond B) \diamond C$ for every $C \in \mathcal{E}(H)$.

Proof. $(1) \Rightarrow(2)$: by theorem 2.2.
$(2) \Rightarrow(1)$: by lemma 3.3.
$(1) \Rightarrow(3)$: by lemma 3.5 .
$(3) \Rightarrow(1)$: let $x \in H,\|x\|=1, C=P_{x}$. Then for each $y \in H$,

$$
\begin{aligned}
\left\langle f_{A}(A) f_{B}(B) P_{x} \overline{f_{B}}(B) \overline{f_{A}}(A) y, y\right\rangle & =\left\langle\left(A \diamond\left(B \diamond P_{x}\right)\right) y, y\right\rangle \\
& =\left\langle\left((A \diamond B) \diamond P_{x}\right) y, y\right\rangle \\
& =\left\langle f_{A \diamond B}(A \diamond B) P_{x} \overline{f_{A \diamond B}}(A \diamond B) y, y\right\rangle .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left\langle f_{A}(A) f_{B}(B) P_{x} \overline{f_{B}}(B) \overline{f_{A}}(A) y, y\right\rangle=\left|\left\langle\overline{f_{B}}(B) \overline{f_{A}}(A) y, x\right\rangle\right|^{2} \\
& \left\langle f_{A \diamond B}(A \diamond B) P_{x} \overline{f_{A \diamond B}}(A \diamond B) y, y\right\rangle=\left|\left\langle\overline{f_{A \diamond B}}(A \diamond B) y, x\right\rangle\right|^{2}
\end{aligned}
$$

we have $\left|\left\langle\overline{f_{B}}(B) \overline{f_{A}}(A) y, x\right\rangle\right|=\left|\left\langle\overline{f_{A \diamond B}}(A \diamond B) y, x\right\rangle\right|$ for every $x, y \in H$.

By lemma 3.6, there exists a complex function g on H such that $|g(x)|=1$ and $\overline{f_{B}}(B) \overline{f_{A}}(A) x=g(x) \overline{f_{A \diamond B}}(A \diamond B) x$ for every $x \in H$.

By lemma 3.8, there exists a constant ξ such that $|\xi|=1$ and $\overline{f_{B}}(B) \overline{f_{A}}(A) x=$ $\xi \overline{f_{A \diamond B}}(A \diamond B) x$ for every $x \in H$.

So we conclude that $\overline{f_{B}}(B) \overline{f_{A}}(A)=\xi \overline{f_{A \diamond B}}(A \diamond B)$.
Taking the adjoint, we have $f_{A}(A) f_{B}(B)=\bar{\xi} f_{A \diamond B}(A \diamond B)$. Thus $\overline{f_{B}}(B) A f_{B}(B)=$ $\overline{\overline{f_{B}}}(B) \overline{f_{A}}(A) f_{A}(A) f_{B}(B)=\xi \overline{f_{A \diamond B}}(A \diamond B) \bar{\xi} f_{A \diamond B}(A \diamond B)=A \diamond B$. That is, $A \diamond B=$ $\overline{f_{B}}(B) A f_{B}(B)$, so by lemma 3.3, we have $A B=B A$.

Theorem 4.2. Let $A, B \in \mathcal{E}(H)$. If $A \diamond B \in \mathcal{P}(H)$, then $A B=B A$.
Proof. If $A \diamond B=0$, then by (SEA3) we have $A \diamond B=B \diamond A$, so by theorem 4.1 we have $A B=B A$.

If $A \diamond B \neq 0$. First, we let $x \in \operatorname{Ran}(A \diamond B)$ and $\|x\|=1$. Then $f_{A}(A) B \overline{f_{A}}(A) x=x$. So $\left\langle B \overline{f_{A}}(A) x, \overline{f_{A}}(A) x\right\rangle=1$. By the Schwarz inequality, we conclude that $B \overline{f_{A}}(A) x=\overline{f_{A}}(A) x$. Thus $A x=f_{A}(A) \overline{f_{A}}(A) x=f_{A}(A) B \overline{f_{A}}(A) x=x$. So $1 \in \operatorname{sp}(A)$ and $B \overline{f_{A}}(A) x=$ $\overline{f_{A}}(A) x=\overline{f_{A}}(1) x$.

Next, we let $x \in \operatorname{Ker}(A \diamond B)$ and $\|x\|=1$. Then $f_{A}(A) B \overline{f_{A}}(A) x=0$. So $\left\langle B \overline{f_{A}}(A) x\right.$, $\left.\overline{f_{A}}(A) x\right\rangle=0$. We conclude that $B \overline{f_{A}}(A) x=0$.

Thus, we always have $B \overline{f_{A}}(A)=\overline{f_{A}}(1)(A \diamond B)$. That is, $f_{A}(1) B \overline{f_{A}}(A)=A \diamond B$.
Taking the adjoint, we have $f_{A}(1) B \overline{f_{A}}(A)=\overline{f_{A}}(1) f_{A}(A) B$.
By lemma 3.2, we have $\overline{f_{A}}(1) B f_{A}(A)=f_{A}(1) \overline{f_{A}}(A) B$. So $f_{A}(1) \overline{f_{A}}(A) B$ is self-adjoint. By [15, proposition 3.2.8], we have

$$
\operatorname{sp}\left(f_{A}(1) \overline{f_{A}}(A) B\right) \backslash\{0\}=\operatorname{sp}\left(f_{A}(1) B \overline{f_{A}}(A)\right) \backslash\{0\}=\operatorname{sp}(A \diamond B) \backslash\{0\} \subseteq \mathbf{R}^{+} .
$$

Thus we conclude that $f_{A}(1) \overline{f_{A}}(A) B \geqslant 0$.
Since $\left(f_{A}(1) \overline{f_{A}}(A) B\right)^{2}=\left(\overline{f_{A}}(1) B f_{A}(A)\right)\left(f_{A}(1) \overline{f_{A}}(A) B\right)=B A B=\left(f_{A}(1) B \overline{f_{A}}(A)\right)$ $\left(\overline{f_{A}}(1) f_{A}(A) B\right)=(A \diamond B)^{2}$, by the uniqueness of positive square root, we have $f_{A}(1) \overline{f_{A}}(A) B=A \diamond B$. That is, $f_{A}(1) \overline{f_{A}}(A) B=\overline{f_{A}}(1) B f_{A}(A)=f_{A}(1) B \overline{f_{A}}(A)=$ $\overline{f_{A}}(1) f_{A}(A) B=A \diamond B$. Thus, $B A=f_{A}(1) B \overline{f_{A}}(A) \overline{f_{A}}(1) f_{A}(A)=f_{A}(1) \overline{f_{A}}(A)$ $B \overline{f_{A}}(1) f_{A}(A)=f_{A}(1) \overline{f_{A}}(A) \overline{f_{A}}(1) f_{A}(A) B=A B$.

Theorem 4.3. Let $A, B \in \mathcal{E}(H)$. Then the following conditions are all equivalent:
(1) $A \diamond(C \diamond B)=(A \diamond C) \diamond B$ for every $C \in \mathcal{E}(H)$;
(2) $C \diamond(A \diamond B)=(C \diamond A) \diamond B$ for every $C \in \mathcal{E}(H)$;
(3) $\langle(A \diamond B) x, x\rangle=\langle A x, x\rangle\langle B x, x\rangle$ for every $x \in H$ with $\|x\|=1$;
(4) $A=t I$ or $B=t I$ for some $0 \leqslant t \leqslant 1$.

Proof. By theorem 2.4, we conclude that $(2) \Longleftrightarrow(3) \Longleftrightarrow(4)$.
$(4) \Rightarrow(1)$ follows from lemma 2.4 and theorem 2.2 easily.
$(1) \Rightarrow(4)$: if (1) holds, then $A \diamond\left(P_{x} \diamond B\right)=\left(A \diamond P_{x}\right) \diamond B$ for each $x \in H$ with $\|x\|=1$.
Without loss of generality, we suppose that $\left\|f_{A}(A) x\right\| \neq 0$. Let $y=\frac{f_{A}(A) x}{\left\|f_{A}(A) x\right\|}$. By lemma 4.2 and theorem 2.1,

$$
\begin{aligned}
A \diamond\left(P_{x} \diamond B\right) & =f_{A}(A)\left(P_{x} B P_{x}\right) \overline{f_{A}}(A) \\
& =f_{A}(A)\left(\langle B x, x\rangle P_{x}\right) \overline{f_{A}}(A) \\
& =\langle B x, x\rangle\left(A \diamond P_{x}\right) \\
& =\left\|f_{A}(A) x\right\|^{2}\langle B x, x\rangle P_{y} .
\end{aligned}
$$

By lemma 4.1 and lemma 4.2,

$$
\begin{aligned}
\left(A \diamond P_{x}\right) \diamond B & =\left(\left\|f_{A}(A) x\right\|^{2} P_{y}\right) \diamond B \\
& =f_{\left\|f_{A}(A) x\right\|^{2} P_{y}}\left(\left\|f_{A}(A) x\right\|^{2} P_{y}\right) B \overline{f_{\| f_{A}}(A) x \|^{2} P_{y}}\left(\left\|f_{A}(A) x\right\|^{2} P_{y}\right) \\
& =f_{\left\|f_{A}(A) x\right\|^{2} I}\left(\left\|f_{A}(A) x\right\|^{2}\right) f_{P_{y}}\left(P_{y}\right) B \overline{f_{\left\|f_{A}(A) x\right\|^{2} I}\left(\left\|f_{A}(A) x\right\|^{2}\right) \overline{f_{P_{y}}}\left(P_{y}\right)} \\
& =\left\|f_{A}(A) x\right\|^{2} P_{y} B P_{y} \\
& =\left\|f_{A}(A) x\right\|^{2}\langle B y, y\rangle P_{y} .
\end{aligned}
$$

Thus $\langle B x, x\rangle=\langle B y, y\rangle$. So, we have $\left\langle\overline{f_{A}}(A) B f_{A}(A) x, x\right\rangle=\langle A x, x\rangle\langle B x, x\rangle$. By lemma 2.5, we conclude that (4) holds.

Theorem 4.4. Let $A \in \mathcal{E}(H), E \in \mathcal{P}(H)$. Then the following conditions are all equivalent:
(1) $A \diamond E \leqslant E$;
(2) $E \overline{f_{A}}(A)(I-E)=0$.

Proof. Since $E \in \mathcal{P}(H)$ and $\left\|\overline{f_{A}}(A)\right\| \leqslant 1$, we have

$$
\begin{aligned}
A \diamond E \leqslant E & \Longleftrightarrow\left\langle f_{A}(A) E \overline{f_{A}}(A) x, x\right\rangle \leqslant\langle E x, x\rangle \text { for every } x \in H \\
& \Longleftrightarrow\left\|E \overline{f_{A}}(A) x\right\| \leqslant\|E x\| \text { for every } x \in H \\
& \left.\Longleftrightarrow \overline{f_{A}}(A)\right|_{\operatorname{Ker}(E)} \subseteq \operatorname{Ker}(E) \\
& \Longleftrightarrow E \overline{f_{A}}(A)(I-E)=0 .
\end{aligned}
$$

Corollary 4.1 [14]. Let $A \in \mathcal{E}(H), E \in \mathcal{P}(H)$. Then the following conditions are all equivalent:
(1) $A^{\frac{1}{2}} E A^{\frac{1}{2}} \leqslant E$;
(2) $A E=E A$.

Proof. $(2) \Rightarrow(1)$ is trivial.
$(1) \Rightarrow(2)$: let $f_{B}(t)=\sqrt{t}$ for each $B \in \mathcal{E}(H)$ and $t \in \operatorname{sp}(B)$, then $\left\{f_{B}\right\}_{B \in \mathcal{E}(H)}$ satisfies the sequential product condition. For this sequential product, $A \diamond E=A^{\frac{1}{2}} E A^{\frac{1}{2}}$. So by theorem 4.4, we have $E A^{\frac{1}{2}}(I-E)=0$. That is, $E A^{\frac{1}{2}}=E A^{\frac{1}{2}} E$. Taking the adjoint, we have $E A^{\frac{1}{2}}=A^{\frac{1}{2}} E$. Thus $A E=E A$.

Corollary 4.2. Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra, $\mathcal{E}(M)=\{A \in M \mid 0 \leqslant A \leqslant I\}, P$ or $I-P$ be a minimal projection in M. Then for every $A \in \mathcal{E}(M)$, the following conditions are all equivalent:
(1) $A \diamond P \leqslant P$;
(2) $A P=P A$.

Proof. (2) $\Rightarrow(1)$: by theorem $2.2, A \diamond P=A P=P A P \leqslant P$.
$(1) \Rightarrow(2)$: if P is a minimal projection in M, then by theorem 4.4 we have $P \overline{f_{A}}(A)$ $(I-P)=0$, that is, $P \overline{f_{A}}(A)=P \overline{f_{A}}(A) P$.

Let $x \in \operatorname{Ran}(P)$ with $\|x\|=1$. Then by lemma 4.3 we have $P \overline{f_{A}}(A) P=\omega_{x}\left(\overline{f_{A}}(A)\right) P$. So $P \overline{f_{A}}(A)=\omega_{x}\left(\overline{f_{A}}(A)\right) P$. Taking the adjoint, we have $f_{A}(A) P=\omega_{x}\left(f_{A}(A)\right) P$. By lemma 3.2, we have $P f_{A}(A)=\overline{\omega_{x}\left(\overline{f_{A}}(A)\right)} P=\omega_{x}\left(f_{A}(A)\right) P$. Thus $P f_{A}(A)=f_{A}(A) P$. Taking the adjoint, we have $P \overline{f_{A}}(A)=\overline{f_{A}}(A) P$. So, $P A=P f_{A}(A) \overline{f_{A}}(A)=$ $f_{A}(A) P \overline{f_{A}}(A)=f_{A}(A) \overline{f_{A}}(A) P=A P$.

If $I-P$ is a minimal projection in M. By theorem 4.4 we have $P \overline{f_{A}}(A)(I-P)=0$. Taking the adjoint, we have $(I-P) f_{A}(A) P=0$. That is, $(I-P) f_{A}(A)=(I-P) f_{A}(A)(I-P)$. Similar to the proof above, we conclude that $(I-P) A=A(I-P)$. So $A P=P A$.

Acknowledgments

This project is supported by the Natural Science Found of China (10771191 and 10471124). The authors would like to express their thanks to the referees for their valuable comments and suggestions.

References

[1] Gudder S and Nagy G 2001 Sequential quantum measurements J. Math. Phys. 42 5212-22
[2] Gudder S and Greechie R 2002 Sequential products on effect algebras Rep. Math. Phys. 49 87-111
[3] Gheondea A and Gudder S 2004 Sequential product of quantum effects Proc. Am. Math. Soc. 132 503-12
[4] Gudder S 2005 Open problems for sequential effect algebras Int. J. Theor. Phys. 44 2199-205
[5] Gudder S and Latrmolire F 2008 Characterization of the sequential product on quantum effects J. Math. Phys. 49 052106-12
[6] Shen J and Wu J D 2009 Not each sequential effect algebra is sharply dominating Phys. Lett. A 373 1708-12
[7] Liu W H and Wu J D 2009 A uniqueness problem of the sequence product on operator effect algebra $\mathcal{E}(\mathcal{H})$ J. Phys. A: Math. Theor. 42 185206-15
[8] Foulis D J and Bennett M K 1994 Effect algebras and unsharp quantum logics Found. Phys. 24 1331-52
[9] Gudder S 1998 Sharply dominating effect algebras Tatra Mt. Math. Publ. 15 23-30
[10] Riečanová Z and Wu J D 2008 States on sharply dominating effect algebras Sci. China A 51 907-14
[11] Smuljan J L 1959 An operator Hellinger integral (Russian) Mat. Sb. (N.S.) 49 381-430
[12] Kaplansky I 1953 Products of normal operators Duke Math. J. 20 257-60
[13] Rudin W 1991 Functional Analysis (New York: McGraw-Hill)
[14] Li Y, Sun X H and Chen Z L 2007 Generalized infimum and sequential product of quantum effects J. Math. Phys. 48102101
[15] Kadison R and Ringrose J 1997 Fundamentals of the Theory of Operator Algebras (I, II) (New York: American Mathematical Society)

