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Abstract
A quantum effect is an operator A on a complex Hilbert space H that satisfies
0 � A � I, E(H) is the set of all quantum effects on H. In 2001, Professors
Gudder and Nagy studied the sequential product A ◦ B = A

1
2 BA

1
2 for

A,B ∈ E(H). In 2005, Professor Gudder asked: Is A ◦ B = A
1
2 BA

1
2 the

only sequential product on E(H)? Recently, Liu and Wu have presented an
example to show that the answer is negative. In this paper, first, we characterize
some algebraic properties of the abstract sequential product on E(H), second,
we present a general method for constructing sequential products on E(H) and,
finally, we study some properties of the sequential products constructed by the
method.

PACS numbers: 02.10−v, 02.30.Tb, 03.65.Ta.

1. Introduction

The sequential effect algebra is an important model for studying quantum measurement theory
[1–7]. A sequential effect algebra is an effect algebra which has a sequential product operation.
First, we recall some elementary notations and results.

An effect algebra is a system (E, 0, 1,⊕), where 0 and 1 are distinct elements of E, and
⊕ is a partial binary operation on E satisfying that [8]

(EA1) If a ⊕ b is defined, then b ⊕ a is defined and b ⊕ a = a ⊕ b.
(EA2) If a ⊕ (b ⊕ c) is defined, then (a ⊕ b) ⊕ c is defined and

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

(EA3) For each a ∈ E, there exists a unique element b ∈ E such that a ⊕ b = 1.
(EA4) If a ⊕ 1 is defined, then a = 0.
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In an effect algebra (E, 0, 1,⊕), if a ⊕ b is defined, we write a ⊥ b. For each
a ∈ (E, 0, 1,⊕), it follows from (EA3) that there exists a unique element b ∈ E such
that a ⊕ b = 1, we denote b by a′. Let a, b ∈ (E, 0, 1,⊕), if there exists c ∈ E such that
a ⊥ c and a ⊕ c = b, then we say that a � b. It follows from [8] that � is a partial order of
(E, 0, 1,⊕) and satisfies that for each a ∈ E, 0 � a � 1, a ⊥ b if and only if a � b′.

Let (E, 0, 1,⊕, ◦) be an effect algebra and a ∈ E. If a ∧ a′ = 0, then a is said to be a
sharp element of E. We denote ES by the set of all sharp elements of E [9, 10].

A sequential effect algebra is an effect algebra (E, 0, 1,⊕) with another binary operation
◦ defined on it satisfying [2]:

(SEA1) The map b �→ a ◦ b is additive for each a ∈ E, that is, if b ⊥ c, then a ◦ b ⊥ a ◦ c

and a ◦ (b ⊕ c) = a ◦ b ⊕ a ◦ c.
(SEA2) 1 ◦ a = a for each a ∈ E.
(SEA3) If a ◦ b = 0, then a ◦ b = b ◦ a.
(SEA4) If a ◦ b = b ◦ a, then a ◦ b′ = b′ ◦ a and a ◦ (b ◦ c) = (a ◦ b) ◦ c for each c ∈ E.
(SEA5) If c ◦ a = a ◦ c and c ◦ b = b ◦ c, then c ◦ (a ◦ b) = (a ◦ b) ◦ c and c ◦ (a ⊕ b) =

(a ⊕ b) ◦ c whenever a ⊥ b.

If (E, 0, 1,⊕, ◦) is a sequential effect algebra, then the operation ◦ is said to be a sequential
product on (E, 0, 1,⊕). If a, b ∈ (E, 0, 1,⊕, ◦) and a ◦ b = b ◦ a, then a and b is said to be
sequentially independent and is denoted by a|b [1, 2].

Let H be a complex Hilbert space, B(H) be the set of all bounded linear operators on
H,P(H) be the set of all projections on H, E(H) be the set of all self-adjoint operators on H
satisfying that 0 � A � I . For A,B ∈ E(H), we say that A ⊕ B is defined if A + B ∈ E(H);
in this case, we define A ⊕ B = A + B. It is easy to see that (E(H), 0, I,⊕) is an effect
algebra; we call it a standard effect algebra [8]. Each element A in E(H) is said to be a
quantum effect; the set E(H)S of all sharp elements of (E(H), 0, I,⊕) is just P(H) [2, 9].

Let A ∈ B(H); we denote Ker(A) = {x ∈ H | Ax = 0}, Ran(A) = {Ax | x ∈ H },
PKer(A) denotes the projection onto Ker(A). Let x ∈ H be a unit vector; Px denotes the
projection onto the one-dimensional subspace spanned by x.

In 2001 and 2002, Professors Gudder, Nagy and Greechie showed that for any two
quantum effects A and B, if we define A ◦ B = A

1
2 BA

1
2 , then the operation ◦ is a sequential

product on the standard effect algebra (E(H), 0, I,⊕); moreover, they studied some properties
of this special sequential product on (E(H), 0, I,⊕) [1, 2].

In 2005, Professor Gudder asked [4]: Is A ◦ B = A
1
2 BA

1
2 the only sequential product on

the standard effect algebra (E(H), 0, I,⊕)?
In 2009, Liu and Wu constructed a new sequential product on (E(H), 0, I,⊕), thus

answering Gudder’s problem negatively [7]. This new sequential product on (E(H), 0, I,⊕)

motivated us to study the following topics in this paper:

(1) characterize the algebraic properties of an abstract sequential product on (E(H), 0, I,⊕);
(2) present a general method for constructing a sequential product on (E(H), 0, I,⊕);
(3) characterize some elementary properties of the sequential product constructed by the

method.

Our results generalize many conclusions in [1, 3, 7].

2. Abstract sequential product on (E(H), 0, I , ⊕)

In this section, we study some elementary properties of the abstract sequential product on the
standard effect algebra (E(H), 0, I,⊕).
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Lemma 2.1 [2]. Let (E, 0, 1,⊕, ◦) be a sequential effect algebra, a ∈ E. Then the following
conditions are all equivalent:

(1) a ∈ ES;
(2) a ◦ a′ = 0;
(3) a ◦ a = a.

Lemma 2.2 [2]. Let (E, 0, 1,⊕, ◦) be a sequential effect algebra, a ∈ E, b ∈ ES . Then the
following conditions are all equivalent:

(1) a � b;
(2) a ◦ b = b ◦ a = a.

Lemma 2.3 [2, 8]. Let (E, 0, 1,⊕, ◦) be a sequential effect algebra, a, b, c ∈ E.

(1) If a ⊥ b, a ⊥ c and a ⊕ b = a ⊕ c, then b = c.
(2) a ◦ b � a.
(3) If a � b, then c ◦ a � c ◦ b.

Lemma 2.4 [7]. Let ◦ be a sequential product on the standard effect algebra (E(H), 0, I,⊕).
Then for any A,B ∈ E(H) and real number t, 0 � t � 1, we have (tA) ◦ B = A ◦ (tB) =
t (A ◦ B).

Lemma 2.5 [1]. Let A,B,C ∈ B(H) and A,B,C be self-adjoint operators. If for every unit
vector x ∈ H, 〈Cx, x〉 = 〈Ax, x〉〈Bx, x〉, then A = tI or B = tI for some real number t.

Lemma 2.6 [11]. Let A ∈ B(H) have the following operator matrix form:

A =
(

A11 A12

A21 A22

)
,

with respect to the space decomposition H = H1 ⊕ H2. Then A � 0 iff

(1) Aii ∈ B(Hi) and Aii � 0, i = 1, 2;
(2) A21 = A∗

12;

(3) there exists a linear operator D from H2 into H1 such that ‖D‖ � 1 and A12 = A
1
2
11DA

1
2
22.

Theorem 2.1. Let ◦ be a sequential product on (E(H), 0, I,⊕), B ∈ E(H),E ∈ P(H). Then
E ◦ B = EBE.

Proof. For A ∈ E(H), let �A : E(H) −→ E(H) be defined by �A(C) = A ◦ C for each
C ∈ E(H). It follows from lemma 2.4 and (SEA1) that �A is affine on the convex set E(H).
Note that E(H) generates algebraically the vector space B(H), so �A has a unique linear
extension to B(H), which we also denote by �A. Then �A is a positive linear operator on
B(H) and �A(I) = A. Thus �A is continuous.

Note that E ∈ P(H) = E(H)S , it follows from lemma 2.1 that E ◦ (I − E) = 0 and so
�E(I − E) = 0. By composing �E with all states on B(H) and using Schwarz’s inequality,
we conclude that �E(B) = �E(EBE). Since EBE ∈ E(H),E ∈ E(H)S and EBE � E,
by lemma 2.2 we have E ◦ (EBE) = EBE. Thus E ◦ B = �E(B) = �E(EBE) =
E ◦ (EBE) = EBE.

In [7], the authors proved the above result for two-dimensional complex Hilbert spaces.�

Theorem 2.2. Let ◦ be a sequential product on (E(H), 0, I,⊕), A,B ∈ E(H) and AB = BA.
Then A ◦ B = B ◦ A = AB.
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Proof. We use the notations as in the proof of theorem 2.1.
Suppose E ∈ P(H) and E ∈ {A}′, i.e., EA = AE. Note that EAE, (I − E)A(I − E) ∈

E(H),EAE � E and (I − E)A(I − E) � I − E, by lemma 2.2, it follows that EAE|E and
(I − E)A(I − E)|(I − E). Since A = EAE + (I − E)A(I − E), by (SEA4) and (SEA5)
we have A|E. By theorem 2.1, we conclude that A ◦ E = E ◦ A = EAE = AE. Thus,
�A(E) = AE. Since �A is a continuous linear operator and {A}′ is a von Neumann algebra,
we conclude that �A(B) = AB. That is, A ◦ B = AB. Similarly, we have B ◦ A = BA.
Thus A ◦ B = B ◦ A = AB. �

Theorem 2.3. Let ◦ be a sequential product on (E(H), 0, I,⊕), A,B ∈ E(H). Then the
following conditions are all equivalent:

(1) AB = BA = B;
(2) A ◦ B � B;
(3) A ◦ B = B;
(4) B ◦ A = B;
(5) B � PKer(I−A);
(6) B � An for each positive integer n.

Proof. (1)⇒(3) and (1)⇒(4): by theorem 2.2.
(3)⇒(2) is obvious.
(4)⇒(3): by theorem 2.2, B ◦ A = B = B ◦ I . Thus, it follows from lemma 2.3 that

B ◦ (I − A) = 0. By (SEA3), B|(I − A). By (SEA4), B|A. So A ◦ B = B ◦ A = B.
(2)⇒(6): by using theorem 2.2 and lemma 2.3 repeatedly, we have

B � A ◦ B � A ◦ I = A;
A ◦ B � A ◦ (A ◦ B) � A ◦ A = A2;
A ◦ (A ◦ B) � A ◦ (A ◦ (A ◦ B)) � A ◦ A2 = A3;
...

A ◦ · · · ◦ (A ◦ B) � A ◦ (A ◦ · · · ◦ (A ◦ B)) � A ◦ An−1 = An.

The above showed that B � An for each positive integer n.
(6)⇒(5): let χ{1} be the characteristic function of {1}. Note that 0 � A � I , it is easy

to know that {An} converges to χ{1}(A) = PKer(I−A) in the strong operator topology. Thus
B � PKer(I−A).

(5)⇒(1): Since 0 � B � PKer(I−A), we have Ker(PKer(I−A)) ⊆ Ker(B). So
Ran(B) ⊆ Ran(PKer(I−A)) = Ker(I − A). Thus (I − A)B = 0. That is, AB = B.
Taking the adjoint, we get AB = BA = B. �

Theorem 2.4. Let ◦ be a sequential product on (E(H), 0, I,⊕), A,B ∈ E(H). Then the
following conditions are all equivalent:

(1) C ◦ (A ◦ B) = (C ◦ A) ◦ B for every C ∈ E(H);
(2) 〈(A ◦ B)x, x〉 = 〈Ax, x〉〈Bx, x〉 for every x ∈ H with ‖x‖ = 1;
(3) A = tI or B = tI for some real number 0 � t � 1.

Proof. By lemma 2.5, we conclude that (2)⇒(3). By theorem 2.2 and lemma 2.4, (3)⇒(1) is
trivial.

(1)⇒(2): if (1) holds, then Px ◦(A◦B) = (Px ◦A)◦B for every x ∈ H with ‖x‖ = 1. By
theorem 2.1, Px ◦ (A◦B) = Px(A◦B)Px = 〈(A◦B)x, x〉Px . By theorem 2.1 and lemma 2.4,
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(Px ◦ A) ◦ B = (PxAPx) ◦ B = (〈Ax, x〉Px) ◦ B = 〈Ax, x〉(Px ◦ B) = 〈Ax, x〉PxBPx =
〈Ax, x〉〈Bx, x〉Px . Thus (2) holds. �

Theorem 2.5. Let ◦ be a sequential product on (E(H), 0, I,⊕), B ∈ E(H),E ∈ P(H). Then
the following conditions are all equivalent:

(1) E ◦ B � B;
(2) EB = BE;
(3) E ◦ B = B ◦ E.

Proof. (2)⇒(3): by theorem 2.2.
(3)⇒(1): by lemma 2.3.
(1)⇒(2): since E ∈ P(H), by theorem 2.1, E ◦ B = EBE. Thus, B − EBE � 0. Note

that

B − EBE =
(

0 EB(I − E)

(I − E)BE (I − E)B(I − E)

)

with respect to the space decomposition H = Ran(E) ⊕ Ker(E), so by lemma 2.6 we have
EB(I − E) = (I − E)BE = 0. Thus B = EBE + (I − E)B(I − E). So EB = BE. �

Theorem 2.6. Let ◦ be a sequential product on (E(H), 0, I,⊕), A,B,C ∈ E(H). If A is
invertible, then the following conditions are all equivalent:

(1) B � C;
(2) A ◦ B � A ◦ C.

Proof. (1)⇒(2): by lemma 2.3.
(2)⇒(1): it is easy to see that ‖A−1‖−1A−1 ∈ E(H).
By lemma 2.3, (‖A−1‖−1A−1) ◦ (A ◦ B) � (‖A−1‖−1A−1) ◦ (A ◦ C).
By theorem 2.2, (‖A−1‖−1A−1)|A and (‖A−1‖−1A−1) ◦ A = ‖A−1‖−1I .
By (SEA4) and theorem 2.2, we have

(‖A−1‖−1A−1) ◦ (A ◦ B) = ((‖A−1‖−1A−1) ◦ A) ◦ B = (‖A−1‖−1I ) ◦ B = ‖A−1‖−1B,

(‖A−1‖−1A−1) ◦ (A ◦ C) = ((‖A−1‖−1A−1) ◦ A) ◦ C = (‖A−1‖−1I ) ◦ C = ‖A−1‖−1C.

So, B � C. �

Corollary 2.1. Let ◦ be a sequential product on (E(H), 0, I,⊕), A,B,C ∈ E(H). If A is
invertible, then the following conditions are all equivalent:

(1) B = C;
(2) A ◦ B = A ◦ C.

3. General method for constructing sequential products on E(H)

In the following, unless specified, let H be a finite-dimensional complex Hilbert space, C be
the set of complex numbers, R be the set of real numbers, for each A ∈ E(H), sp(A) be the
spectrum of A and B(sp(A)) be the set of all bounded complex Borel functions on sp(A).

Let A,B ∈ B(H), if there exists a complex constant ξ such that |ξ | = 1 and A = ξB,
then we denote A ≈ B.

In [7], Liu and Wu showed that if we define A ◦ B = A
1
2 fi(A)Bf−i (A)A

1
2 for

A,B ∈ E(H), where fz(t) = exp z(ln t) if t ∈ (0, 1] and fz(0) = 0, then ◦ is a sequential
product on (E(H), 0, I,⊕); this result answered Gudder’s problem negatively.

5
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Now, we present a general method for constructing sequential products on E(H).
For each A ∈ E(H), take fA ∈ B(sp(A)).
Define A � B = fA(A)BfA(A) for A,B ∈ E(H).
We say the set {fA}A∈E(H) satisfies the sequential product condition if the following two

conditions hold:

(i) for every A ∈ E(H) and t ∈ sp(A), |fA(t)| = √
t ;

(ii) for any A,B ∈ E(H), if AB = BA, then fA(A)fB(B) ≈ fAB(AB).

If {fA}A∈E(H) satisfies the sequential product condition, then it is easy to see that

(1) fA(A)fA(A) = fA(A)fA(A) = A, (fA(A))∗ = fA(A);
(2) if 0 ∈ sp(A), then fA(0) = 0;
(3) if A = ∑n

k=1 λkEk , where {Ek}nk=1 are pairwise orthogonal projections, then fA(A) =∑n
k=1 fA(λk)Ek;

(4) for each E ∈ P(H), fE(E) = fE(0)(I − E) + fE(1)E = fE(1)E;
(5) for any A,B ∈ E(H),A � B ∈ E(H).

Lemma 3.1 [12]. Let H be a complex Hilbert space, A,B ∈ B(H),A,B,AB be three normal
operators, and at least one of A,B be a compact operator. Then BA is also a normal operator.

Lemma 3.2 [13]. If M,N, T ∈ B(H),M,N are normal operators and MT = T N , then
M∗T = T N∗.

Lemma 3.3. Let {fA}A∈E(H) satisfy the sequential product condition and A,B ∈ E(H). If
A � B = B � A or A � B = fB(B)AfB(B), then AB = BA.

Proof. If A � B = B � A, that is, fA(A)BfA(A) = fB(B)AfB(B), then fA(A)fB(B)

fB(B)fA(A) = fB(B)fA(A)fA(A)fB(B), so fA(A)fB(B) is normal. By lemma 3.1, we have
that fB(B)fA(A) is also normal. Note that (fA(A)fB(B))fA(A) = fA(A)(fB(B)fA(A)),
by using lemma 3.2, we have (fA(A)fB(B))∗fA(A) = fA(A)(fB(B)fA(A))∗. That
is, fB(B)A = AfB(B). Taking the adjoint, we have fB(B)A = AfB(B). Thus,
AB = AfB(B)fB(B) = fB(B)AfB(B) = fB(B)fB(B)A = BA.

If A � B = fB(B)AfB(B), that is, fA(A)BfA(A) = fB(B)AfB(B), the proof is similar,
we omit it. �

Lemma 3.4. Let {fA}A∈E(H) satisfy the sequential product condition and A,B ∈ E(H). If
AB = BA, then A � B = B � A = AB.

Proof. Since AB = BA, by sequential product condition (i) we have A � B =
fA(A)BfA(A) = |fA|2(A)B = AB. Similarly, B�A = fB(B)AfB(B) = |fB |2(B)A = AB.
Thus A � B = B � A = AB. �

Lemma 3.5. Let {fA}A∈E(H) satisfy the sequential product condition and A,B ∈ E(H). If
AB = BA, then for every C ∈ E(H),A � (B � C) = (A � B) � C.

Proof. By lemma 3.4, A�B = AB. By sequential product condition (ii), there exists a complex
constant ξ such that |ξ | = 1 and fA(A)fB(B) = ξfAB(AB). Taking the adjoint, we have
fB(B)fA(A) = ξfAB(AB). Thus, fA(A)fB(B)CfB(B)fA(A) = fAB(AB)CfAB(AB) =
fA�B(A � B)CfA�B(A � B). That is, A � (B � C) = (A � B) � C. �

Lemma 3.6 [1]. If y, z ∈ H and |〈y, x〉| = |〈z, x〉| for every x ∈ H , then there exists
c ∈ C, |c| = 1, such that y = cz.

6
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Lemma 3.7 [14]. Let f : H −→ C be a mapping, T ∈ B(H). If the operator S : H −→ H

defined by S(x) = f (x)T (x) is linear, then f (x) = f (y) for every x, y �∈ Ker(T ).

Lemma 3.8. Let f : H −→ C be a mapping, T ∈ B(H). If the operator S : H −→ H defined
by S(x) = f (x)T (x) is linear, then there exists a constant ξ ∈ C such that S(x) = ξT (x) for
every x ∈ H .

Proof. By lemma 3.7, there exists a constant ξ ∈ C such that S(x) = ξT (x) for every
x �∈ Ker(T ). Of course, S(x) = 0 = ξT (x) for every x ∈ Ker(T ). So S(x) = ξT (x) for
every x ∈ H . �

Our main result in the section is the following.

Theorem 3.1. For each A ∈ E(H), take fA ∈ B(sp(A)). Define A � B = fA(A)BfA(A) for
B ∈ E(H). Then � is a sequential product on (E(H), 0, I,⊕) iff the set {fA}A∈E(H) satisfies
the sequential product condition.

Proof.

(1) First, we suppose that {fA}A∈E(H) satisfies the sequential product condition, we show that
(E(H), 0, I,⊕,�) is a sequential effect algebra.
(SEA1) is obvious.
By lemma 3.4, I � B = B for each B ∈ E(H), so (SEA2) hold.
We verify (SEA3) as follows: if A � B = 0, then fA(A)BfA(A) = 0, so fA(A)B

1
2 = 0,

thus, we have AB = fA(A)fA(A)B
1
2 B

1
2 = 0. Taking the adjoint, we have AB = BA.

So A � B = B � A. We verify (SEA4) as follows: if A � B = B � A, then by lemma 3.3,
AB = BA. So A(I −B) = (I −B)A. By lemma 3.4, we have A�(I −B) = (I −B)�A.
By lemma 3.5, A � (B � C) = (A � B) � C for every C ∈ E(H). We verify (SEA5) as
follows: if C�A = A�C and C�B = B�C, then by lemma 3.3, AC = CA,BC = CB.
So (SEA5) follows easily by lemma 3.4. Thus, we proved that (E(H), 0, I,⊕,�) is a
sequential effect algebra.

(2) Now we suppose that � is a sequential product on (E(H), 0, I,⊕), we show that the
set {fA}A∈E(H) satisfies the sequential product condition. Since (E(H), 0, I,⊕,�) is
a sequential effect algebra, by theorem 2.2, for each A ∈ E(H),A � I = A, thus
|fA|2(A) = A. If A = ∑n

k=1 λkEk , where {Ek}nk=1 are pairwise orthogonal projections,∑n
k=1 Ek = I , then sp(A) = {λk}, |fA|2(A) = ∑n

k=1 |fA(λk)|2Ek . Thus |fA(λk)| = √
λk

and {fA}A∈E(H) satisfies sequential product condition (i).

To prove that {fA}A∈E(H) satisfies sequential product condition (ii), let A,B ∈ E(H) and
AB = BA. By theorem 2.2, we have A � B = B � A = AB. Thus by (SEA4),
A � (B � C) = (A � B) � C for every C ∈ E(H).

Let x ∈ H, ‖x‖ = 1, C = Px . Then for every y ∈ H , we have

〈fA(A)fB(B)PxfB(B)fA(A)y, y〉 = 〈(A � (B � Px))y, y〉
= 〈((A � B) � Px)y, y〉
= 〈((AB) � Px)y, y〉
= 〈fAB(AB)PxfAB(AB)y, y〉.

Since

〈fA(A)fB(B)PxfB(B)fA(A)y, y〉 = |〈fB(B)fA(A)y, x〉|2,
〈fAB(AB)PxfAB(AB)y, y〉 = |〈fAB(AB)y, x〉|2,

we have |〈fB(B)fA(A)y, x〉| = |〈fAB(AB)y, x〉| for every x, y ∈ H .

7
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By lemma 3.6, there exists a complex function g on H such that |g(x)| ≡ 1 and
fB(B)fA(A)x = g(x)fAB(AB)x for every x ∈ H . By lemma 3.8, there exists a constant
ξ ∈ C such that |ξ | = 1 and fB(B)fA(A)x = ξfAB(AB)x for every x ∈ H . So we conclude
that fB(B)fA(A) = ξfAB(AB). Taking the adjoint, we have fA(A)fB(B) = ξfAB(AB).
Thus fA(A)fB(B) ≈ fAB(AB). This showed that the set {fA}A∈E(H) satisfies the sequential
product condition. �

Theorem 3.1 presents a general method for constructing sequential products on E(H).
Now, we give two examples.

Example 3.1. Let g be a bounded complex Borel function on [0, 1] such that

|g(t)| = √
t for each t ∈ [0, 1],

g(t1t2) = g(t1)g(t2) for any t1, t2 ∈ [0, 1].

For each A ∈ E(H), let fA = g|sp(A). Then it is easy to know that {fA} satisfies the
sequential product condition. So by theorem 3.1, A � B = fA(A)BfA(A) = g(A)Bg(A)

defines a sequential product on the standard effect algebra (E(H), 0, I,⊕).
It is clear that example 3.1 generalizes Liu and Wu’s result in [7].

Example 3.2. Let H be a two-dimensional complex Hilbert space, � = {γ | γ be a
decomposition of I into two rank-1 orthogonal projections}. For each γ ∈ �, we can
represent γ by a pair of rank-1 orthogonal projections (E1, E2), if A ∈ E(H),A �∈ span{I } =
{zI : z ∈ C} and A = ∑2

k=1 λkEk , then we say that A can be diagonalized by γ .
For each γ ∈ �, we take a ξ(γ ) ∈ R. If A ∈ E(H),A �∈ span{I } and A can be

diagonalized by γ , let fA(t) = t
1
2 +ξ(γ )i for t ∈ sp(A).

If A ∈ E(H) and A = λI , let fA(t) = √
t for t ∈ sp(A).

Then the set {fA}A∈E(H) satisfies the sequential product condition (see the proof below).
So by theorem 3.1, A�B = fA(A)BfA(A) defines a sequential product on the standard effect
algebra (E(H), 0, I,⊕).

Proof. Obviously, {fA}A∈E(H) satisfies sequential product condition (i).
Now we show that {fA}A∈E(H) satisfies sequential product condition (ii). Let A,B ∈

E(H),AB = BA.

(1) If A = ∑2
k=1 λkEk, B = ∑2

k=1 μkEk, λ1 �= λ2, μ1 �= μ2, let γ = (E1, E2),
we have fA(t) = t

1
2 +ξ(γ )i for t ∈ sp(A), fB(t) = t

1
2 +ξ(γ )i for t ∈ sp(B). So

fA(A) = A
1
2 +ξ(γ )i = ∑2

k=1 λ
1
2 +ξ(γ )i

k Ek, fB(B) = B
1
2 +ξ(γ )i = ∑2

k=1 μ
1
2 +ξ(γ )i

k Ek .

(1a) If λ1μ1 = λ2μ2, then AB = λ1μ1I , so fAB(t) = t
1
2 for t ∈ sp(AB), thus

we have fAB(AB) = (AB)
1
2 = √

λ1μ1I, fA(A)fB(B) = ∑2
k=1(λkμk)

1
2 +ξ(γ )iEk =

(λ1μ1)
1
2 +ξ(γ )iI = (λ1μ1)

ξ(γ )ifAB(AB) ≈ fAB(AB).
(1b) If λ1μ1 �= λ2μ2, then AB = ∑2

k=1 λkμkEk , so fAB(t) = t
1
2 +ξ(γ )i for

t ∈ sp(AB), fAB(AB) = (AB)
1
2 +ξ(γ )i = ∑2

k=1(λkμk)
1
2 +ξ(γ )iEk , thus we have

fA(A)fB(B) = ∑2
k=1(λkμk)

1
2 +ξ(γ )iEk = fAB(AB).

(2) If A = λI, B = ∑2
k=1 μkEk, μ1 �= μ2, let γ = (E1, E2). Then we have fA(t) = t

1
2

for t ∈ sp(A), fB(t) = t
1
2 +ξ(γ )i for t ∈ sp(B). So fA(A) = A

1
2 = √

λI, fB(B) =
B

1
2 +ξ(γ )i = ∑2

k=1 μ
1
2 +ξ(γ )i

k Ek, AB = ∑2
k=1 λμkEk .

(2a) If λ = 0, then AB = 0, fAB(t) = t
1
2 for t ∈ sp(AB), so fAB(AB) = (AB)

1
2 = 0. Thus

fA(A)fB(B) = 0 = fAB(AB).
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(2b) If λ �= 0, then fAB(t) = t
1
2 +ξ(γ )i for t ∈ sp(AB). So fAB(AB) = (AB)

1
2 +ξ(γ )i =

λ
1
2 +ξ(γ )i

∑2
k=1(μk)

1
2 +ξ(γ )iEk . Thus fA(A)fB(B) = √

λ
∑2

k=1(μk)
1
2 +ξ(γ )iEk ≈

fAB(AB).
(3) If A = λI, B = μI , then fA(t) = t

1
2 for t ∈ sp(A), fB(t) = t

1
2 for t ∈ sp(B).

So fA(A) = A
1
2 = √

λI, fB(B) = B
1
2 = √

μI . AB = λμI, fAB(t) = t
1
2 for

t ∈ sp(AB), fAB(AB) = (AB)
1
2 = √

λμI . Thus fA(A)fB(B) = fAB(AB).
It follows from (1)–(3) that the set {fA}A∈E(H) satisfies sequential product

condition (ii). �

4. Properties of the sequential product � on (E(H), 0, I , ⊕)

Now, we study some elementary properties of the sequential product � defined in section 3.
In this section, unless specified, we follow the notations in section 3. We always suppose

that {fA}A∈E(H) satisfies the sequential product condition. So by theorem 3.1, � is a sequential
product on the standard effect algebra (ε(H), 0, I,⊕).

Lemma 4.1. If C ∈ E(H), 0 � t � 1, then ftC(tC) ≈ ftI (t)fC(C).

Proof. Since {fA}A∈E(H) satisfies the sequential product condition, ftC(tC) ≈ ftI (tI )

fC(C) = ftI (t)fC(C). �

Lemma 4.2. Let A ∈ E(H), x ∈ H, ‖x‖ = 1, ‖fA(A)x‖ �= 0, y = fA(A)x

‖fA(A)x‖ . Then A � Px =
‖fA(A)x‖2Py .

Proof. For each z ∈ H, (A � Px)z = fA(A)PxfA(A)z = 〈fA(A)z, x〉fA(A)x = 〈z, fA(A)x〉
fA(A)x = ‖fA(A)x‖2Pyz. So A � Px = ‖fA(A)x‖2Py . �

Lemma 4.3. Let M ⊆ B(H) be a von Neumann algebra, P be a minimal projection in
M,A ∈ M,x ∈ Ran(P ), ‖x‖ = 1. Then PAP = ωx(A)P , where ωx(A) = 〈Ax, x〉.
Proof. Since P is a minimal projection in M, by [15, proposition 6.4.3], PAP = λP for some
complex number λ. Thus 〈PAPx, x〉 = 〈λPx, x〉. So λ = ωx(A). �

Theorem 4.1. Let A,B ∈ E(H). Then the following conditions are all equivalent:

(1) AB = BA;
(2) A � B = B � A;
(3) A � (B � C) = (A � B) � C for every C ∈ E(H).

Proof. (1)⇒(2): by theorem 2.2.
(2)⇒(1): by lemma 3.3.
(1)⇒(3): by lemma 3.5.
(3)⇒(1): let x ∈ H, ‖x‖ = 1, C = Px . Then for each y ∈ H,

〈fA(A)fB(B)PxfB(B)fA(A)y, y〉 = 〈(A � (B � Px))y, y〉
= 〈((A � B) � Px)y, y〉
= 〈fA�B(A � B)PxfA�B(A � B)y, y〉.

Since

〈fA(A)fB(B)PxfB(B)fA(A)y, y〉 = |〈fB(B)fA(A)y, x〉|2,
〈fA�B(A � B)PxfA�B(A � B)y, y〉 = |〈fA�B(A � B)y, x〉|2,

we have |〈fB(B)fA(A)y, x〉| = |〈fA�B(A � B)y, x〉| for every x, y ∈ H .
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By lemma 3.6, there exists a complex function g on H such that |g(x)| = 1 and
fB(B)fA(A)x = g(x)fA�B(A � B)x for every x ∈ H .

By lemma 3.8, there exists a constant ξ such that |ξ | = 1 and fB(B)fA(A)x =
ξfA�B(A � B)x for every x ∈ H .

So we conclude that fB(B)fA(A) = ξfA�B(A � B).
Taking the adjoint, we have fA(A)fB(B) = ξfA�B(A � B). Thus fB(B)AfB(B) =

fB(B)fA(A)fA(A)fB(B) = ξfA�B(A � B)ξfA�B(A � B) = A � B. That is, A � B =
fB(B)AfB(B), so by lemma 3.3, we have AB = BA. �

Theorem 4.2. Let A,B ∈ E(H). If A � B ∈ P(H), then AB = BA.

Proof. If A � B = 0, then by (SEA3) we have A � B = B � A, so by theorem 4.1 we have
AB = BA.

If A � B �= 0. First, we let x ∈ Ran(A � B) and ‖x‖ = 1. Then fA(A)BfA(A)x = x. So
〈BfA(A)x, fA(A)x〉 = 1. By the Schwarz inequality, we conclude that BfA(A)x = fA(A)x.
Thus Ax = fA(A)fA(A)x = fA(A)BfA(A)x = x. So 1 ∈ sp(A) and BfA(A)x =
fA(A)x = fA(1)x.

Next, we let x ∈ Ker(A � B) and ‖x‖ = 1. Then fA(A)BfA(A)x = 0. So 〈BfA(A)x,

fA(A)x〉 = 0. We conclude that BfA(A)x = 0.
Thus, we always have BfA(A) = fA(1)(A � B). That is, fA(1)BfA(A) = A � B.
Taking the adjoint, we have fA(1)BfA(A) = fA(1)fA(A)B.
By lemma 3.2, we have fA(1)BfA(A) = fA(1)fA(A)B. So fA(1)fA(A)B is self-adjoint.

By [15, proposition 3.2.8], we have
sp(fA(1)fA(A)B)\{0} = sp(fA(1)BfA(A))\{0} = sp(A � B)\{0} ⊆ R+.
Thus we conclude that fA(1)fA(A)B � 0.
Since (fA(1)fA(A)B)2 = (fA(1)BfA(A))(fA(1)fA(A)B) = BAB = (fA(1)BfA(A))

(fA(1)fA(A)B) = (A � B)2, by the uniqueness of positive square root, we have
fA(1)fA(A)B = A � B. That is, fA(1)fA(A)B = fA(1)BfA(A) = fA(1)BfA(A) =
fA(1)fA(A)B = A � B. Thus, BA = fA(1)BfA(A)fA(1)fA(A) = fA(1)fA(A)

BfA(1)fA(A) = fA(1)fA(A)fA(1)fA(A)B = AB. �

Theorem 4.3. Let A,B ∈ E(H). Then the following conditions are all equivalent:

(1) A � (C � B) = (A � C) � B for every C ∈ E(H);

(2) C � (A � B) = (C � A) � B for every C ∈ E(H);

(3) 〈(A � B)x, x〉 = 〈Ax, x〉〈Bx, x〉 for every x ∈ H with ‖x‖ = 1;

(4) A = tI or B = tI for some 0 � t � 1.

Proof. By theorem 2.4, we conclude that (2)⇐⇒(3)⇐⇒(4).
(4)⇒(1) follows from lemma 2.4 and theorem 2.2 easily.
(1)⇒(4): if (1) holds, then A � (Px � B) = (A � Px) � B for each x ∈ H with ‖x‖ = 1.

Without loss of generality, we suppose that ‖fA(A)x‖ �= 0. Let y = fA(A)x

‖fA(A)x‖ .
By lemma 4.2 and theorem 2.1,

A � (Px � B) = fA(A)(PxBPx)fA(A)

= fA(A)(〈Bx, x〉Px)fA(A)

= 〈Bx, x〉(A � Px)

= ‖fA(A)x‖2〈Bx, x〉Py.
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By lemma 4.1 and lemma 4.2,

(A � Px) � B = (‖fA(A)x‖2Py) � B

= f‖fA(A)x‖2Py
(‖fA(A)x‖2Py)Bf‖fA(A)x‖2Py

(‖fA(A)x‖2Py)

= f‖fA(A)x‖2I (‖fA(A)x‖2)fPy
(Py)Bf‖fA(A)x‖2I (‖fA(A)x‖2)fPy

(Py)

= ‖fA(A)x‖2PyBPy

= ‖fA(A)x‖2〈By, y〉Py.

Thus 〈Bx, x〉 = 〈By, y〉. So, we have 〈fA(A)BfA(A)x, x〉 = 〈Ax, x〉〈Bx, x〉. By lemma 2.5,
we conclude that (4) holds. �

Theorem 4.4. Let A ∈ E(H),E ∈ P(H). Then the following conditions are all equivalent:

(1) A � E � E;
(2) EfA(A)(I − E) = 0.

Proof. Since E ∈ P(H) and ‖fA(A)‖ � 1, we have

A � E � E ⇐⇒ 〈fA(A)EfA(A)x, x〉 � 〈Ex, x〉 for every x ∈ H

⇐⇒ ‖EfA(A)x‖ � ‖Ex‖ for every x ∈ H

⇐⇒ fA(A)|Ker(E) ⊆ Ker(E)

⇐⇒ EfA(A)(I − E) = 0. �

Corollary 4.1 [14]. Let A ∈ E(H),E ∈ P(H). Then the following conditions are all
equivalent:

(1) A
1
2 EA

1
2 � E;

(2) AE = EA.

Proof. (2)⇒(1) is trivial.
(1)⇒(2): let fB(t) = √

t for each B ∈ E(H) and t ∈ sp(B), then {fB}B∈E(H) satisfies
the sequential product condition. For this sequential product, A � E = A

1
2 EA

1
2 . So by

theorem 4.4, we have EA
1
2 (I −E) = 0. That is, EA

1
2 = EA

1
2 E. Taking the adjoint, we have

EA
1
2 = A

1
2 E. Thus AE = EA. �

Corollary 4.2. Let M ⊆ B(H) be a von Neumann algebra, E(M) = {A ∈ M|0 � A � I }, P
or I − P be a minimal projection in M. Then for every A ∈ E(M), the following conditions
are all equivalent:

(1) A � P � P ;
(2) AP = PA.

Proof. (2)⇒(1): by theorem 2.2, A � P = AP = PAP � P .
(1)⇒(2): if P is a minimal projection in M, then by theorem 4.4 we have PfA(A)

(I − P) = 0, that is, PfA(A) = PfA(A)P .
Let x ∈ Ran(P ) with ‖x‖ = 1. Then by lemma 4.3 we have PfA(A)P = ωx(fA(A))P .

So PfA(A) = ωx(fA(A))P . Taking the adjoint, we have fA(A)P = ωx(fA(A))P . By

lemma 3.2, we have PfA(A) = ωx(fA(A))P = ωx(fA(A))P . Thus PfA(A) = fA(A)P .
Taking the adjoint, we have PfA(A) = fA(A)P . So, PA = PfA(A)fA(A) =
fA(A)PfA(A) = fA(A)fA(A)P = AP .

If I−P is a minimal projection in M. By theorem 4.4 we have PfA(A)(I−P) = 0. Taking
the adjoint, we have (I − P)fA(A)P = 0. That is, (I − P)fA(A) = (I − P)fA(A)(I − P).
Similar to the proof above, we conclude that (I − P)A = A(I − P). So AP = PA. �
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